Dense packing of identical ellipses with six contacting neighbours

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing circles within ellipses

The problem of packing circles within ellipses is considered in the present paper. A new parametrization is employed by means of which the ellipse is represented by a rectangle. Algorithms with global convergence properties are presented. Numerical experiments are exhibited.

متن کامل

Packing and Covering Dense Graphs

Let d be a positive integer. A graph G is called d-divisible if d divides the degree of each vertex of G. G is called nowhere d-divisible if no degree of a vertex of G is divisible by d. For a graph H, gcd(H) denotes the greatest common divisor of the degrees of the vertices of H. The H-packing number of G is the maximum number of pairwise edge disjoint copies of H in G. The H-covering number o...

متن کامل

Dense packing on uniform lattices

We study the Hard Core Model on the graphs G obtained from Archimedean tilings i.e. configurations in {0,1} with the nearest neighbor 1’s forbidden. Our particular aim in choosing these graphs is to obtain insight to the geometry of the densest packings in a uniform discrete set-up. We establish density bounds, optimal configurations reaching them in all cases, and introduce a probabilistic cel...

متن کامل

Packing non-identical circles within a rectangle with open length

Packing non-identical circles inside a rectangle witnesses a wide range of industrial applications. However, the non-convex constraints in this problem make it intractable using exact analytical approaches. Even via heuristic methods, the solution time for industrial-scale instances sometimes is too long to be acceptable. This article aims to challenge the existing methods for the benchmark ins...

متن کامل

Packing identical simple polygons is NP-hard

Given a small polygon S, a big simple polygon B and a positive integer k, it is shown to be NP-hard to determine whether k copies of the small polygon (allowing translation and rotation) can be placed in the big polygon without overlap. Previous NP-hardness results were only known in the case where the big polygon is allowed to be non-simple. A novel reduction from Planar-Circuit-SAT is present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Crystallographica Section A Foundations of Crystallography

سال: 2010

ISSN: 0108-7673

DOI: 10.1107/s0108767310096042